Corticotropin-Releasing Factor Requires CRF Binding Protein to Potentiate NMDA Receptors via CRF Receptor 2 in Dopamine Neurons
نویسندگان
چکیده
Stress increases addictive behaviors and is a common cause of relapse. Corticotropin-releasing factor (CRF) plays a key role in the modulation of drug taking by stress. However, the mechanism by which CRF modulates neuronal activity in circuits involved in drug addiction is poorly understood. Here we show that CRF induces a potentiation of NMDAR (N-methyl-D-aspartate receptor)-mediated synaptic transmission in dopamine neurons of the ventral tegmental area (VTA). This effect involves CRF receptor 2 (CRF-R2) and activation of the phospholipase C (PLC)-protein kinase C (PKC) pathway. We also find that this potentiation requires CRF binding protein (CRF-BP). Accordingly, CRF-like peptides, which do not bind the CRF-BP with high affinity, do not potentiate NMDARs. These results provide evidence of the first specific roles for CRF-R2 and CRF-BP in the modulation of neuronal activity and suggest that NMDARs in the VTA may be a target for both drugs of abuse and stress.
منابع مشابه
Chronic cocaine enhances corticotropin-releasing factor-dependent potentiation of excitatory transmission in ventral tegmental area dopamine neurons.
Current concepts suggest that stress-induced release of neuromodulators such as corticotropin-releasing factor (CRF) can drive drug-dependent behaviors. Although previous drug exposure can enhance behavioral and neurochemical responses to stress, it is unclear how such drug exposure alters the CRF modulation of excitatory synapses onto ventral tegmental area (VTA) dopamine neurons, a key locus ...
متن کاملTopographical distribution of corticotropin-releasing factor type 2 receptor-like immunoreactivity in the rat dorsal raphe nucleus: co-localization with tryptophan hydroxylase.
Corticotropin-releasing factor (CRF) and CRF-related neuropeptides are involved in the regulation of stress-related physiology and behavior. Members of the CRF family of neuropeptides bind to two known receptors, the CRF type 1 (CRF₁) receptor, and the CRF type 2 (CRF₂) receptor. Although the distribution of CRF₂ receptor mRNA expression has been extensively studied, the distribution of CRF₂ re...
متن کاملCorticotropin Releasing Factor-Induced CREB Activation in Striatal Neurons Occurs via a Novel Gβγ Signaling Pathway
The peptide corticotropin-releasing factor (CRF) was initially identified as a critical component of the stress response. CRF exerts its cellular effects by binding to one of two cognate G-protein coupled receptors (GPCRs), CRF receptor 1 (CRFR1) or 2 (CRFR2). While these GPCRs were originally characterized as being coupled to Gα(s), leading to downstream activation of adenylyl cyclase (AC) and...
متن کاملCorticotropin-releasing factor increases mouse ventral tegmental area dopamine neuron firing through a protein kinase C-dependent enhancement of Ih.
Stress induces the release of the peptide corticotropin-releasing factor (CRF) into the ventral tegmental area (VTA), and also increases dopamine levels in brain regions receiving dense VTA input. Therefore, stress may activate the mesolimbic dopamine system in part through the actions of CRF in the VTA. Here, we explored the mechanism by which CRF affects VTA dopamine neuron firing. Using patc...
متن کاملStress Hormone Enhances Synaptic NMDA Response on Dopamine Neurons
belongs to a family of related peptides that includes the Urocortins. Stress potently releases CRF not only from the hypothalamus but also from extrahypothalamic neu-rons (Tsigos and Chrousos, 2002). Two genes have been Stress can induce cravings and relapse in abstinent identified in mammals that encode CRF receptors, CRF-drug addicts. In this issue of Neuron, Ungless et al. R1 and CRF-R2 (Car...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuron
دوره 39 شماره
صفحات -
تاریخ انتشار 2003